home *** CD-ROM | disk | FTP | other *** search
- /*
- floating point Bessel's function
- of the first and second kinds
- of order one
-
- j1(x) returns the value of J1(x)
- for all real values of x.
-
- There are no error returns.
- Calls sin, cos, sqrt.
-
- There is a niggling bug in J1 which
- causes errors up to 2e-16 for x in the
- interval [-8,8].
- The bug is caused by an inappropriate order
- of summation of the series. rhm will fix it
- someday.
-
- Coefficients are from Hart & Cheney.
- #6050 (20.98D)
- #6750 (19.19D)
- #7150 (19.35D)
-
- y1(x) returns the value of Y1(x)
- for positive real values of x.
- For x<=0, error number EDOM is set and a
- large negative value is returned.
-
- Calls sin, cos, sqrt, log, j1.
-
- The values of Y1 have not been checked
- to more than ten places.
-
- Coefficients are from Hart & Cheney.
- #6447 (22.18D)
- #6750 (19.19D)
- #7150 (19.35D)
- */
-
- #include <math.h>
- #include <errno.h>
-
- int errno;
- static double pzero, qzero;
- static double tpi = .6366197723675813430755350535e0;
- static double pio4 = .7853981633974483096156608458e0;
- static double p1[] = {
- 0.581199354001606143928050809e21,
- -.6672106568924916298020941484e20,
- 0.2316433580634002297931815435e19,
- -.3588817569910106050743641413e17,
- 0.2908795263834775409737601689e15,
- -.1322983480332126453125473247e13,
- 0.3413234182301700539091292655e10,
- -.4695753530642995859767162166e7,
- 0.2701122710892323414856790990e4,
- };
- static double q1[] = {
- 0.1162398708003212287858529400e22,
- 0.1185770712190320999837113348e20,
- 0.6092061398917521746105196863e17,
- 0.2081661221307607351240184229e15,
- 0.5243710262167649715406728642e12,
- 0.1013863514358673989967045588e10,
- 0.1501793594998585505921097578e7,
- 0.1606931573481487801970916749e4,
- 1.0,
- };
- static double p2[] = {
- -.4435757816794127857114720794e7,
- -.9942246505077641195658377899e7,
- -.6603373248364939109255245434e7,
- -.1523529351181137383255105722e7,
- -.1098240554345934672737413139e6,
- -.1611616644324610116477412898e4,
- 0.0,
- };
- static double q2[] = {
- -.4435757816794127856828016962e7,
- -.9934124389934585658967556309e7,
- -.6585339479723087072826915069e7,
- -.1511809506634160881644546358e7,
- -.1072638599110382011903063867e6,
- -.1455009440190496182453565068e4,
- 1.0,
- };
- static double p3[] = {
- 0.3322091340985722351859704442e5,
- 0.8514516067533570196555001171e5,
- 0.6617883658127083517939992166e5,
- 0.1849426287322386679652009819e5,
- 0.1706375429020768002061283546e4,
- 0.3526513384663603218592175580e2,
- 0.0,
- };
- static double q3[] = {
- 0.7087128194102874357377502472e6,
- 0.1819458042243997298924553839e7,
- 0.1419460669603720892855755253e7,
- 0.4002944358226697511708610813e6,
- 0.3789022974577220264142952256e5,
- 0.8638367769604990967475517183e3,
- 1.0,
- };
- static double p4[] = {
- -.9963753424306922225996744354e23,
- 0.2655473831434854326894248968e23,
- -.1212297555414509577913561535e22,
- 0.2193107339917797592111427556e20,
- -.1965887462722140658820322248e18,
- 0.9569930239921683481121552788e15,
- -.2580681702194450950541426399e13,
- 0.3639488548124002058278999428e10,
- -.2108847540133123652824139923e7,
- 0.0,
- };
- static double q4[] = {
- 0.5082067366941243245314424152e24,
- 0.5435310377188854170800653097e22,
- 0.2954987935897148674290758119e20,
- 0.1082258259408819552553850180e18,
- 0.2976632125647276729292742282e15,
- 0.6465340881265275571961681500e12,
- 0.1128686837169442121732366891e10,
- 0.1563282754899580604737366452e7,
- 0.1612361029677000859332072312e4,
- 1.0,
- };
-
- double
- j1(arg) double arg;{
- double xsq, n, d, x;
- double sin(), cos(), sqrt();
- int i;
-
- x = arg;
- if(x < 0.) x = -x;
- if(x > 8.){
- asympt(x);
- n = x - 3.*pio4;
- n = sqrt(tpi/x)*(pzero*cos(n) - qzero*sin(n));
- if(arg <0.) n = -n;
- return(n);
- }
- xsq = x*x;
- for(n=0,d=0,i=8;i>=0;i--){
- n = n*xsq + p1[i];
- d = d*xsq + q1[i];
- }
- return(arg*n/d);
- }
-
- double
- y1(arg) double arg;{
- double xsq, n, d, x;
- double sin(), cos(), sqrt(), log(), j1();
- int i;
-
- errno = 0;
- x = arg;
- if(x <= 0.){
- errno = EDOM;
- return(-HUGE);
- }
- if(x > 8.){
- asympt(x);
- n = x - 3*pio4;
- return(sqrt(tpi/x)*(pzero*sin(n) + qzero*cos(n)));
- }
- xsq = x*x;
- for(n=0,d=0,i=9;i>=0;i--){
- n = n*xsq + p4[i];
- d = d*xsq + q4[i];
- }
- return(x*n/d + tpi*(j1(x)*log(x)-1./x));
- }
-
- static
- asympt(arg) double arg;{
- double zsq, n, d;
- int i;
- zsq = 64./(arg*arg);
- for(n=0,d=0,i=6;i>=0;i--){
- n = n*zsq + p2[i];
- d = d*zsq + q2[i];
- }
- pzero = n/d;
- for(n=0,d=0,i=6;i>=0;i--){
- n = n*zsq + p3[i];
- d = d*zsq + q3[i];
- }
- qzero = (8./arg)*(n/d);
- }